Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534699

RESUMO

Intracellular survival and immune evasion are typical features of staphylococcal infections. USA300 is a major clone of methicillin-resistant S. aureus (MRSA), a community- and hospital-acquired pathogen capable of disseminating throughout the body and evading the immune system. Carnosine is an endogenous dipeptide characterized by antioxidant and anti-inflammatory properties acting on the peripheral (macrophages) and tissue-resident (microglia) immune system. In this work, RAW 264.7 murine macrophages were infected with the USA300 ATCC BAA-1556 S. aureus strain and treated with 20 mM carnosine and/or 32 mg/L erythromycin. Stable small colony variant (SCV) formation on blood agar medium was obtained after 48 h of combined treatment. Whole genome sequencing of the BAA-1556 strain and its stable derivative SCVs when combining Illumina and nanopore technologies revealed three single nucleotide differences, including a nonsense mutation in the shikimate kinase gene aroK. Gene expression analysis showed a significant up-regulation of the uhpt and sdrE genes in the stable SCVs compared with the wild-type, likely involved in adaptation to the intracellular milieu.

2.
Comput Struct Biotechnol J ; 23: 1154-1168, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510977

RESUMO

In recent years, the role of bioinformatics and computational biology together with omics techniques and transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identification of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in various RNA-seq data processing applications, allows the identification of differentially expressed genes across two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize the resulting gene lists. These studies provide valuable information about disease-causing biological processes and can help in identifying molecular targets for novel therapies. This review focuses on differential gene expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers and discuss the advantages and disadvantages of these techniques.

3.
Microb Genom ; 9(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38085804

RESUMO

Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Listeria monocytogenes. Genome-wide homology search analysis showed the presence of Tn7088-like elements in 12 out of 23 L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10-5 copies per chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10-4 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10-5 and 2.48×10-5 copies per chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.


Assuntos
Bacteriocinas , Bacteriófagos , Lactobacillus crispatus , Feminino , Humanos , Prófagos/genética , Bacteriocinas/genética , Bacteriófagos/genética
4.
J Bacteriol ; 205(9): e0019123, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695857

RESUMO

Bacterial SOS response is an inducible system of DNA repair and mutagenesis. Streptococci lack a canonical SOS response, but an SOS-like response was reported in some species. The mef(A)-msr(D)-carrying prophage Ф1207.3 of Streptococcus pyogenes contains a region, spanning orf6 to orf11, showing homology to characterized streptococcal SOS-like cassettes. Genome-wide homology search showed the presence of the whole Φ1207.3 SOS-like cassette in three S. pyogenes prophages, while parts of it were found in other bacterial species. To investigate whether this cassette confers an SOS-mutagenesis phenotype, we constructed Streptococcus pneumoniae R6 isogenic derivative strains: (i) FR172, streptomycin resistant, (ii) FR173, carrying Φ1207.3, and (iii) FR174, carrying a recombinant Φ1207.3, where the SOS-like cassette was deleted. These strains were used in survival and mutation rate assays using a UV-C LED instrument, for which we designed and 3D-printed a customized equipment, constituted of an instrument support and swappable-autoclavable mini-plates and lids. Upon exposure to UV fluences ranging from 0 to 6,400 J/m2 at four different wavelengths, 255, 265, 275, and 285 nm, we found that the presence of Φ1207.3 SOS-like cassette increases bacterial survival up to 34-fold. Mutation rate was determined by measuring rifampicin resistance acquisition upon exposure to UV fluence of 50 J/m2 at the four wavelengths by fluctuation test. The presence of Φ1207.3 SOS-like cassette resulted in a significant increase in the mutation rate (up to 18-fold) at every wavelength. In conclusion, we demonstrated that Φ1207.3 carries a functional SOS-like cassette responsible for an increased survival and increased mutation rate in S. pneumoniae. IMPORTANCE Bacterial mutation rate is generally low, but stress conditions and DNA damage can induce stress response systems, which allow for improved survival and continuous replication. The SOS response is a DNA repair mechanism activated by some bacteria in response to stressful conditions, which leads to a temporary hypermutable phenotype and is usually absent in streptococcal genomes. Here, using a reproducible and controlled UV irradiation system, we demonstrated that the SOS-like gene cassette of prophage Φ1207.3 is functional, responsible for a temporary hypermutable phenotype, and enhances bacterial survival to UV irradiation. Prophage Φ1207.3 also carries erythromycin resistance genes and can lysogenize different pathogenic bacteria, constituting an example of a mobile genetic element which can confer multiple phenotypes to its host.


Assuntos
Taxa de Mutação , Prófagos , Prófagos/genética , Streptococcus pneumoniae , Streptococcus pyogenes/genética , Bioensaio
5.
Microorganisms ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512819

RESUMO

Streptococcus pneumoniae is an important human pathogen causing both mild and severe diseases. In this work, we determined the complete genome sequence of the S. pneumoniae clinical isolate BM6001, which is the original host of the ICE Tn5253. The BM6001 genome is organized in one circular chromosome of 2,293,748 base pairs (bp) in length, with an average GC content of 39.54%; the genome harbors a type 19F capsule locus, two tandem copies of pspC, the comC1-comD1 alleles and the type I restriction modification system SpnIII. The BM6001 mobilome accounts for 15.54% (356,521 bp) of the whole genome and includes (i) the ICE Tn5253 composite; (ii) the novel IME Tn7089; (iii) the novel transposon Tn7090; (iv) 3 prophages and 2 satellite prophages; (v) 5 genomic islands (GIs); (vi) 72 insertion sequences (ISs); (vii) 69 RUPs; (viii) 153 BOX elements; and (ix) 31 SPRITEs. All MGEs, except for the GIs, produce excised circular forms and attB site restoration. Tn7089 is 9089 bp long and contains 11 ORFs, of which 6 were annotated and code for three functions: integration/excision, mobilization and adaptation. Tn7090 is 9053 bp in size, flanked by two copies of ISSpn7, and contains seven ORFs organized as a single transcriptional unit, with genes encoding for proteins likely involved in the uptake and binding of Mg2+ cations in the adhesion to host cells and intracellular survival. BM6001 GIs, except for GI-BM6001.4, are variants of the pneumococcal TIGR4 RD5 region of diversity, pathogenicity island PPI1, R6 Cluster 4 and PTS island. Overall, prophages and satellite prophages contain genes predicted to encode proteins involved in DNA replication and lysogeny, in addition to genes encoding phage structural proteins and lytic enzymes carried only by prophages. ΦBM6001.3 has a mosaic structure that shares sequences with prophages IPP69 and MM1 and disrupts the competent comGC/cglC gene after chromosomal integration. Treatment with mitomycin C results in a 10-fold increase in the frequency of ΦBM6001.3 excised forms and comGC/cglC coding sequence restoration but does not restore competence for genetic transformation. In addition, phylogenetic analysis showed that BM6001 clusters in a small lineage with five other historical strains, but it is distantly related to the lineage due to its unique mobilome, suggesting that BM6001 has progressively accumulated many MGEs while losing competence for genetic transformation.

6.
Microbiol Spectr ; 11(1): e0421122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625667

RESUMO

Streptococcus pyogenes prophage Φ1207.3 (formerly Tn1207.3) carries the mef(A)-msr(D) resistance genes, responsible for type M macrolide resistance. To investigate if Φ1207.3 is a functional bacteriophage, we transferred the element from the original S. pyogenes host in a prophage-free and competence-deficient S. pneumoniae strain. Pneumococcal cultures of the Φ1207.3-carrying lysogen were treated with mitomycin C to assess if Φ1207.3 enters the lytic cycle. Mitomycin C induced a limited phage burst and a growth impairment, resulting in early entrance into the stationary phase. To determine if Φ1207.3 is able to produce mature phage particles, we prepared concentrated supernatants recovered from a mitomycin C-induced pneumococcal culture by sequential centrifugation and ultracentrifugation steps. Negative-staining transmission electron microscopy (TEM) of supernatants revealed the presence of phage particles with an icosahedral, electron-dense capsid and a long, noncontractile tail, typical of a siphovirus. Quantification of Φ1207.3 was performed by quantitative PCR (qPCR) and semiquantitatively by TEM. PCR quantified 3.34 × 104 and 6.06 × 104 excised forms of phage genome per milliliter of supernatant obtained from the untreated and mitomycin C-treated cultures, respectively. By TEM, we estimated 3.02 × 103 and 7.68 × 103 phage particles per milliliter of supernatant. The phage preparations of Φ1207.3 infected and lysogenized pneumococcal recipient strains at a frequency of 7.5 × 10-6 lysogens/recipient but did not show sufficient lytic activity to form plaques. Phage lysogenization efficiently occurred after 30 min of contact of the phages with the recipient cells and required a minimum of 103 phage particles. IMPORTANCE Bacteriophages play an important role in bacterial physiology and genome evolution. The widespread use of genome sequencing revealed that bacterial genomes can contain several different integrated temperate bacteriophages, which can constitute up to 20% of the genome. Most of these bacteriophages are only predicted in silico and are never shown to be functional. In fact, it is often difficult to induce the lytic cycle of temperate bacteriophages. In this work, we show that Φ1207.3, a peculiar bacteriophage originally from Streptococcus pyogenes, which can lysogenize different streptococci and carries the macrolide resistance mef(A)-msr(D) gene pair, is capable of producing mature virions, but only at a low level, while not being able to produce plaques. This temperate phage is probably a partially functional phage, which seems to have lost lytic characteristics to specialize in lysogenization. While we are not used to conceiving phages separately from lysis, this behavior could actually be more frequent than expected.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Antibacterianos/farmacologia , Streptococcus pyogenes , Macrolídeos/farmacologia , Mitomicina/farmacologia , Farmacorresistência Bacteriana/genética , Prófagos/genética
7.
Minerva Obstet Gynecol ; 75(5): 432-439, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686637

RESUMO

BACKGROUND: The genomic approach has deeply changed the microbiology perspective, mainly concerning the microbioma identification. In this regard, some microbes colonize the healthy vagina. Vaginitis is a common gynecological ailment and includes bacterial vaginosis (BV), usually caused by local dysbiosis, such as a microbiota imbalance. Lactobacilli are the most prevalent bacteria colonizing the healthy vagina, so guaranteeing local eubiosis. In particular, vaginal colonization by L. crispatus is associated with low susceptibility to BV. Therefore, probiotics, such as life bacteria providing health advantages, are a current strategy in the prevention or treatment of vaginitis, including BV. However, there is a low level of evidence that probiotics after ingestion could really colonize the vagina. In particular, no study evidenced that L. crispatus after ingestion can colonize vagina. Therefore, the current study explored the capacity of Biovaginil® (NTC, Milan, Italy) dietary supplement containing Lactobacillus crispatus NTCVAG04 and vitamin A to colonize the gut and vagina in women with a history of vaginitis/vaginosis. METHODS: Twenty fertile females (mean age 34.0 years) were enrolled in the study. Rectal and vaginal swabs were collected at baseline and after the first and second cycle of Biovaginil®. Each cycle lasted 14 days within two consecutive menstrual periods. RESULTS: Seven women were excluded from the analysis because the samples were technically not evaluable. One woman dropped out because of mild adverse event. At the end of the study, nine women (75%) had positive rectal swab for L. crispatus NTCVAG04, and 8 of them also had positive vaginal swab. CONCLUSIONS: The current study provided the first evidence that L. crispatus NTCVAG04, administered by two Biovaginil® courses, colonized both the gut and vagina. Moreover, the L. crispatus NTCVAG04 strain could be considered the archetype of a new class of oral probiotics that actively colonize the vagina, and that could be called "colpobiotics."


Assuntos
Lactobacillus crispatus , Microbiota , Vaginose Bacteriana , Vulvovaginite , Humanos , Feminino , Adulto , Vagina/microbiologia , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/genética , Vaginose Bacteriana/microbiologia , Bactérias , Administração Oral
8.
Cancers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358635

RESUMO

The primary cilium (PC) is a sensory organelle present on the cell surface, modulating the activity of many pathways. Dysfunctions in the PC lead to different pathologic conditions including cancer. Hedgehog signaling (Hh) is regulated by PC and the loss of its control has been observed in many cancers, including mesothelioma. Malignant pleural mesothelioma (MPM) is a fatal cancer of the pleural membranes with poor therapeutic options. Recently, overexpression of the Hh transcriptional activator GL1 has been demonstrated to be associated with poor overall survival (OS) in MPM. However, unlike other cancers, the response to G-protein-coupled receptor smoothened (SMO)/Hh inhibitors is poor, mainly attributable to the lack of markers for patient stratification. For all these reasons, and in particular for the role of PC in the regulation of Hh, we investigated for the first time the status of PC in MPM tissues, demonstrating intra- and inter-heterogeneity in its expression. We also correlated the presence of PC with the activation of the Hh pathway, providing uncovered evidence of a PC-independent regulation of the Hh signaling in MPM. Our study contributes to the understanding MPM heterogeneity, thus helping to identify patients who might benefit from Hh inhibitors.

9.
Pharmaceutics ; 14(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145684

RESUMO

Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.

10.
Front Cell Infect Microbiol ; 12: 869763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795182

RESUMO

The in vitro stimulation of immune system cells with live or killed bacteria is essential for understanding the host response to pathogens. In the present study, we propose a model combining transcriptomic and cytokine assays on murine splenocytes to describe the immune recall in the days following pneumococcal lung infection. Mice were sacrificed at days 1, 2, 4, and 7 after Streptococcus pneumoniae (TIGR4 serotype 4) intranasal infection and splenocytes were cultured in the presence or absence of the same inactivated bacterial strain to access the transcriptomic and cytokine profiles. The stimulation of splenocytes from infected mice led to a higher number of differentially expressed genes than the infection or stimulation alone, resulting in the enrichment of 40 unique blood transcription modules, including many pathways related to adaptive immunity and cytokines. Together with transcriptomic data, cytokines levels suggested the presence of a recall immune response promoting both innate and adaptive immunity, stronger from the fourth day after infection. Dimensionality reduction and feature selection identified key variables of this recall response and the genes associated with the increase in cytokine concentrations. This model could study the immune responses involved in pneumococcal infection and possibly monitor vaccine immune response and experimental therapies efficacy in future studies.


Assuntos
Infecções Pneumocócicas , Infecções Respiratórias , Animais , Citocinas/metabolismo , Memória Imunológica , Camundongos , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Baço , Streptococcus pneumoniae/genética , Transcriptoma
12.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171093

RESUMO

Streptococcus mitis is a Gram-positive bacterium, member of the oral commensal microbiota, which can occasionally be the etiologic agent of diseases such as infective endocarditis, bacteraemia and septicaemia. The highly recombinogenic and repetitive nature of the S. mitis genome impairs the assembly of a complete genome relying only on short sequencing reads. Oxford Nanopore sequencing can overcome this limitation by generating long reads, enabling the resolution of genomic repeated regions and the assembly of a complete genome sequence. Since the output of a Nanopore sequencing run is strongly influenced by genomic DNA quality and molecular weight, the DNA isolation is the crucial step for an optimal sequencing run. In the present work, we have set up and compared three DNA isolation methods on two S. mitis strains, evaluating their capability of preserving genomic DNA integrity and purity. Sequencing of DNA isolated with a mechanical lysis-based method, despite being cheaper and quicker, did not generate ultra-long reads (maximum read length of 59516 bases) and did not allow the assembly of a circular complete genome. Two methods based on enzymatic lysis of the bacterial cell wall, followed by either (i) a modified CTAB DNA isolation procedure, or (ii) a DNA purification after osmotic lysis of the protoplasts allowed the sequencing of ultra-long reads up to 107294 and 181199 bases in length, respectively. The reconstruction of a circular complete genome was possible sequencing DNAs isolated using the enzymatic lysis-based methods.


Assuntos
DNA Bacteriano/isolamento & purificação , Sequenciamento por Nanoporos/métodos , Streptococcus mitis/genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota , Boca/microbiologia , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma
13.
Microbiol Resour Announc ; 11(1): e0102121, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35049351

RESUMO

The whole-genome sequences of Mycobacterium chimaera strains 850 and 852, which were isolated from two different water samples obtained from a heater-cooler unit at Siena University Hospital (Italy), were determined by combining Nanopore and Illumina technologies. Genomes of both strains 850 and 852 consist of a circular chromosome and five plasmids, with sizes of 6,275,686 bp and 6,453,144 bp, respectively.

14.
Mob DNA ; 12(1): 25, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740368

RESUMO

BACKGROUND: Tn5253, a composite Integrative Conjugative Element (ICE) of Streptococcus pneumoniae carrying tet(M) and cat resistance determinants, was found to (i) integrate at specific 83-bp integration site (attB), (ii) produce circular forms joined by a 84-bp sequence (attTn), and (iii) restore the chromosomal integration site. The purpose of this study is to functionally characterize the attB in S. pneumoniae strains with different genetic backgrounds and in other bacterial species, and to investigate the presence of Tn5253 attB site into bacterial genomes. RESULTS: Analysis of representative Tn5253-carryng transconjugants obtained in S. pneumoniae strains with different genetic backgrounds and in other bacterial species, namely Streptococcus agalactiae, Streptococcus gordonii, Streptococcus pyogenes, and Enterococcus faecalis showed that: (i) Tn5253 integrates in rbgA of S. pneumoniae and in orthologous rbgA genes of other bacterial species, (ii) integration occurs always downstream of a 11-bp sequence conserved among streptococcal and enterococcal hosts, (iii) length of the attB site corresponds to length of the duplication after Tn5253 integration, (iv) attB duplication restores rbgA CDS, (v) Tn5253 produced circular forms containing the attTn site at a concentration ranging between 2.0 × 10-5 to 1.2 × 10-2 copies per chromosome depending on bacterial species and strain, (vi) reconstitution of attB sites occurred at 3.7 × 10-5 to 1.7 × 10-2 copies per chromosome. A database search of complete microbial genomes using Tn5253 attB as a probe showed that (i) thirteen attB variants were present in the 85 complete pneumococcal genomes, (ii) in 75 pneumococcal genomes (88.3 %), the attB site was 83 or 84 nucleotides in length, while in 10 (11.7 %) it was 41 nucleotides, (iii) in other 19 bacterial species attB was located in orthologous rbgA genes and its size ranged between 17 and 84 nucleotides, (iv) the 11-bp sequence, which correspond to the last 11 nucleotides of attB sites, is conserved among the different bacterial species and can be considered the core of the Tn5253 integration site. CONCLUSIONS: A functional characterization of the Tn5253 attB integration site combined with genome analysis contributed to elucidating the potential of Tn5253 horizontal gene transfer among different bacterial species.

15.
BMC Res Notes ; 14(1): 432, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823574

RESUMO

OBJECTIVES: In streptococci, the type M resistance to macrolides is due to the mef(A)-msr(D) efflux transport system of the ATP-Binding cassette (ABC) superfamily, where it is proposed that mef(A) codes for the transmembrane channel and msr(D) for the two ATP-binding domains. Phage ϕ1207.3 of Streptococcus pyogenes, carrying the mef(A)-msr(D) gene pair, is able to transfer the macrolide efflux phenotype to Streptococcus pneumoniae. Deletion of mef(A) in pneumococcal ϕ1207.3-carrying strains did not affect erythromycin efflux. In order to identify candidate genes likely involved in complementation of mef(A) deletion, the Mef(A) amino acid sequence was used as probe for database searching. RESULTS: In silico analysis identified 3 putative candidates in the S. pneumoniae R6 genome, namely spr0971, spr1023 and spr1932. Isogenic deletion mutants of each candidate gene were constructed and used in erythromycin sensitivity assays to investigate their contribution to mef(A) complementation. Since no change in erythromycin sensitivity was observed compared to the parental strain, we produced double and triple mutants to assess the potential synergic activity of the selected genes. Also these mutants did not complement the mef(A) function.


Assuntos
Macrolídeos , Streptococcus pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/genética
16.
Microbiol Resour Announc ; 10(41): e0079921, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647809

RESUMO

The complete genome sequence of Streptococcus pneumoniae strain Rx1, a Hex mismatch repair-deficient standard transformation recipient, was obtained by combining Nanopore and Illumina sequencing technologies. The genome consists of a 2.03-Mb circular chromosome, with 2,054 open reading frames and a GC content of 39.72%.

17.
Methods Protoc ; 4(3)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34564305

RESUMO

DNA sequencing of whole bacterial genomes has revealed that the entire set of mobile genes (mobilome) represents as much as 25% of the bacterial genome. Despite the huge availability of sequence data, the functional analysis of the mobile genetic elements (MGEs) is rarely reported. Therefore, established laboratory protocols are needed to investigate the biology of this important part of the bacterial genome. Conjugation is a mechanism of horizontal gene transfer which allows the exchange of MGEs among strains of the same or different bacterial species. In streptococci and enterococci, integrative and conjugative elements (ICEs) represent a large part of the mobilome. Here, we describe an efficient and easy-to-perform plate mating protocol for in vitro conjugative transfer of ICEs in streptococci (Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus gordonii, Streptococcus pyogenes), Enterococcus faecalis, and Bacillus subtilis. Conjugative transfer is carried out on solid media and selection of transconjugants is performed with a multilayer plating. This protocol allows the transfer of large genetic elements with a size up to 81 kb, and a transfer frequency up to 6.7 × 10-3 transconjugants/donor cells.

18.
Microbiol Resour Announc ; 10(32): e0063421, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382824

RESUMO

The complete genome sequence of Lactobacillus crispatus type strain ATCC 33820 was obtained by combining Nanopore and Illumina sequencing technologies. The genome consists of a 2.2-Mb circular chromosome with 2,194 open reading frames and an average GC content of 37.0%.

19.
Mol Pharm ; 17(3): 852-864, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017579

RESUMO

Clinical trials have demonstrated partial protection against HIV-1 infection by vaginal microbicide formulations based on antiretroviral (ARV) drugs. Improved formulations that will maintain sustained drug concentrations at viral target sites in the cervicovaginal mucosa are needed. We have previously demonstrated that treatment of cervicovaginal cell lines with ARV drugs can alter gene expression of drug transporters, suggesting that the mucosal disposition of ARV drugs delivered vaginally can be modulated by drug transporters. This study aimed to investigate in vivo modulation of drug transporter expression in a nonhuman primate model by tenofovir and darunavir released from film formulations. Cervicovaginal tissues were collected from drug-naïve macaques and from macaques vaginally treated with film formulations of tenofovir or darunavir. Drug release in vaginal fluid as well as drug absorption in cervicovaginal tissues and lymph nodes were verified by mass spectrometry. The effects of exposure to drugs on the expression of transporters relevant to ARV drugs were evaluated by quantitative PCR. We showed expression in cervicovaginal tissue of drug-naïve macaques of transporters important for distribution of ARV drugs, albeit at lower levels compared to human tissue for key transporters including P-glycoprotein. Concentrations of tenofovir and darunavir well above the EC50 values determined in vitro were detected in vaginal fluid and vaginal tissues of macaques treated with drug-dissolving films over 24 h and were also comparable to those shown previously to modulate drug transporter expression. Accordingly, Multidrug Resistance associated Protein 2 (MRP2) in cervicovaginal tissue was upregulated by both tenofovir and darunavir. The two drugs also differentially induced and/or inhibited expression of key uptake transporters for reverse transcriptase inhibitors and protease inhibitors. The lower expression of key transporters in macaques may result in increased retention of ARV drugs at the simian cervicovaginal mucosa compared to the human mucosa and has implications for translation of preclinical data. Modulation of drug transporter expression by tenofovir and darunavir points to the potential benefit of MRP2 inhibition to increase ARV drug penetration through the cervicovaginal epithelium.


Assuntos
Darunavir/farmacocinética , Composição de Medicamentos/métodos , Infecções por HIV/prevenção & controle , Inibidores da Protease de HIV/farmacocinética , HIV-1 , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Tenofovir/farmacocinética , Regulação para Cima/efeitos dos fármacos , Vagina/metabolismo , Administração Intravaginal , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Darunavir/administração & dosagem , Modelos Animais de Doenças , Feminino , Infecções por HIV/virologia , Inibidores da Protease de HIV/administração & dosagem , Humanos , Macaca fascicularis , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Tenofovir/administração & dosagem , Distribuição Tecidual
20.
Microbiol Spectr ; 7(3)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31111814

RESUMO

Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, Streptococcus pneumoniae is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.


Assuntos
Genoma Bacteriano , Genômica , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Bacteriófagos , Reparo do DNA , Enzimas de Restrição-Modificação do DNA , Transferência Genética Horizontal , Engenharia Genética , Humanos , Plasmídeos , Regiões Promotoras Genéticas , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...